
18/9/2007 I2A 98 slides 5 1 Richard Bornat
Dept of Computer Science

Merging sorted sequences.

Suppose I have two sequences, not necessarily the
same length, each sorted by (!):

<13,23,24,24,35,80,85,86,87,88,90,92>

<9,14,25,29,32,44,66,81,82,90,91,94,98,99>

Then I can merge them into a single sorted sequence,
treating each like a stack of cards and taking the
smallest exposed card each time:

<13,...>, <9,...>: take 9 from right, exposing 14.

<13,...>, <14,...>: take 13 from left, exposing 23.

<23,...>, <14,...>: take 14 from right, exposing 25.

<23,...>, <25,...>: take 23 from left, exposing 24.

<24,...>, <25,...>: take 24 from left, exposing
second 24.

... and so on.

18/9/2007 I2A 98 slides 5 2 Richard Bornat
Dept of Computer Science

When there are equal numbers I can take from either
side:

<90,92>, <90,91,94,98,99>: either take 90 from
left, exposing 92, or take 90 from right,
exposing 91.

When one side is empty, I must take from the other:

<>, <94,98,99>: take 94 from right

... and so on

I keep this process going till both sides are empty.

The result will certainly be the sorted sequence <9,
13, 14, 23, 24, 24, 25, 29, 32, 35, 44, 66, 80, 81, 82,
85, 86, 87, 88, 90, 90, 91, 92, 94, 98, 99>

18/9/2007 I2A 98 slides 5 3 Richard Bornat
Dept of Computer Science

This program merges A am an.. "[]1 with
B bm bn.. "[]1 , putting the result into C cm cn.. "[]1 ,
where cn cm an am bn bm= + " + "() ():

int ia, ib, ic, cn;
for (ia=am, ib=bm, ic=cm, cn=cm+an-am+bn-bm;
 ic!=cn;) {
 if (ia==an) // A is exhausted
 C[ic++]=B[ib++];
 else
 if (ib==bn) // B is exhausted
 C[ic++]=A[ia++];
 else
 if (A[ia]<=B[ib]) // A can come first
 C[ic++]=A[ia++];
 else // B must come first
 C[ic++]=B[ib++];
}

The for has an empty INC part: this isn’t a mistake.

You may have to brush up your understanding of exactly what
formulæ like ia++ mean.

This program takes O NA NB+() execution time,
where NA and NB are the lengths of the array

segments merged; it takes O 1() space.

18/9/2007 I2A 98 slides 5 4 Richard Bornat
Dept of Computer Science

It’s easy to package it as a method:

public void merge(type[] A, int am, int an,
 type[] B, int bm, int bn,
 type[] C, int cm) {
 int ia, ib, ic, cn;
 for (ia=am, ib=bm, ic=cm, cn=cm+an-am+bn-bm;
 ic!=cn;) {
 if (ia==an) C[ic++]=B[ib++];
 else
 if (ib==bn) C[ic++]=A[ia++];
 else
 if (A[ia]<=B[ib]) C[ic++]=A[ia++];
 else C[ic++]=B[ib++];
 }
}

In this program, and throughout the discussion of mergesort, I’m

assuming that we are dealing with arrays of some type which can

be ordered. They needn’t necessarily be integers or strings.

I’ve used the (!) operator to compare elements of the arrays: in

reality you might have to use a method and write something like

A[ia].lesseq(B[ib]).

18/9/2007 I2A 98 slides 5 5 Richard Bornat
Dept of Computer Science

Warning: the method is not as robust as it might
seem!

• It will crash if an am> but either an or
am is outside the limits of the array A;

• likewise for bn, bm and B;
• it will crash if cm or cn is outside the

limits of C;
• if an am bn bm"() + "() is negative it

will exceed the limits of C and crash;
• it may do very stupid things, including

crashing, if an am< or bn bm< .

So the specification of this method ought to include
lots of precautionary conditions.

You may like to practise your specification skills by writing
down some of those conditions.

Computer scientists believe that it is better that a program
crashes than it does the wrong thing and carries on. Hence the
tests in the code above are all either == or #.

It would certainly be possible to write a version which worked
even though am an> or bm bn> . Is it necessary to do so?
Would it be sensible to do so?

18/9/2007 I2A 98 slides 5 6 Richard Bornat
Dept of Computer Science

Using merge to speed up insertion sort.

Because insertion sort takes O N 2() execution time,
it’s tempting to halve the size of the problem we give
it.

the same applies if we try to speed up selection sort or bubble
sort.

Sorting one half-size array with an O N 2() algorithm
takes one quarter the time that it would take to sort
the whole array; so sorting two half-size arrays would
take one half the time that it would take to sort the
whole array.

And then merging the results, using the program
above, would be O N()

– so if we do two half-sorts and a merge, we get an
algorithm which should be about twice as fast as
insertion sort.

18/9/2007 I2A 98 slides 5 7 Richard Bornat
Dept of Computer Science

Assume insertionsort(type[] X, int m, int n)
sorts the array segment X m n.. "[]1 .

Then this method sorts A m n.. "[]1 using the auxiliary
array B m n.. "[]1

void splitsort(type[] A, type[] B,
 int m, int n) {
 if (n-m>=2) { // sort two elements or more
 int k = (m+n)/2; // the midpoint
 insertionsort(A, m, k);
 insertionsort(A, k, n);
 merge(A, m, k, A, k, n, B, m);
 for (int i=m; i<n; i++) A[i]=B[i];
 }
}

merge puts the answer into B: line 8 copies it back again.

It’s a pity that we have to include line 8, but
nevertheless, at sufficiently large problem sizes
splitsort A B m n(, , ,) will be faster than
insertionsort A m n, ,(), despite the wasteful copying.

You may like to try to construct the argument which supports
that assertion.

I assume that the execution cost of the new formula is at worst
O N().

18/9/2007 I2A 98 slides 5 8 Richard Bornat
Dept of Computer Science

We can speed it up a bit by making two steps of
halving.

If each step is an advantage, why not use two or more?

This program uses splitsort1 to achieve a sort in array
S n0 1.. "[]:

type[] T = new type[S.length];
splitsort1(S,T,0,S.length);

Here’s splitsort1:

void splitsort1(type[] A, type[] B,
 int m, int n) {
 if (n-m>=2) { // sort two elements or more
 int k = (m+n)/2; // the midpoint
 splitsort2(A, B, m, k);
 splitsort2(A, B, k, n);
 merge(A, m, k, A, k, n, B, m);
 for (int i=m; i<n; i++) A[i]=B[i];
 }
}

18/9/2007 I2A 98 slides 5 9 Richard Bornat
Dept of Computer Science

splitsort2 still works by using insertion sort:

void splitsort2(type[] A, type[] B,
 int m, int n) {
 if (n-m>=2) { // sort two elements or more
 int k = (m+n)/2; // the midpoint
 insertionsort(A, m, k);
 insertionsort(A, k, n);
 merge(A, m, k, A, k, n, B, m);
 for (int i=m; i<n; i++) A[i]=B[i];
 }
}

These two together would be faster than splitsort, for
the same reason as splitsort is faster than insertion
sort.

So I could do the same trick again, and again, and ...

But surely, any method which sorts one array, using
another as auxiliary storage, would do in place of
splitsort2 – or indeed in place of splitsort1.

This is the principle of procedural abstraction: we use
methods according to their specification.

18/9/2007 I2A 98 slides 5 10 Richard Bornat
Dept of Computer Science

void mergesort
 (type[] A, type[] B, int m, int n) {
 if (n-m>=2) { // sort two elements or more
 int k = (m+n)/2; // the midpoint
 mergesort(A, B, m, k);
 mergesort(A, B, k, n);
 mergehalves(A, B, m, k, n);
 for (int i=m; i<n; i++) A[i]=B[i];
 }
}

mergehalves takes A m k.. "[]1 and A k n.. "[]1 and
merges them into B m n.. "[]1 :

public void mergehalves
 (type[] A, type[] B, int m, int k, int n) {
 int ia1, ia2, ib;
 for (ia1=m, ia2=k, ib=m; ib!=n;) {
 if (ia1==k) B[ib++]=A[ia2++];
 else
 if (ia2==n) B[ib++]=A[ia1++];
 else
 if (A[ia1]<=A[ia2]) B[ib++]=A[ia1++];
 else B[ib++]=A[ia2++];
 }
}

18/9/2007 I2A 98 slides 5 11 Richard Bornat
Dept of Computer Science

Self-definition may be acceptable.

Experts don’t try to imagine the order in which
recursive methods like mergesort do their thing.

Become an expert.

“A rose is a rose is a rose” defines a thing in terms of
itself, and is meaningless (as a definition).

Haven’t I defined mergesort in terms of mergesort?

No: I have defined “mergesort on a sequence length
n m" ” in terms of “mergesort on a sequence length
n m"() ÷ 2” – not at all the same thing.

18/9/2007 I2A 98 slides 5 12 Richard Bornat
Dept of Computer Science

That’s because

1 mergesort on a trivial sequence (zero or one
elements, n m" < 2) does nothing at all,
because such a sequence is already sorted;

2 we define “mergesort on a sequence length
n m"() ÷ 2” in terms of “mergesort on a

sequence length n m"() ÷() ÷2 2”, and so on
down;

3 If an integer is ($2), you can’t keep dividing it
by 2 indefinitely without reaching 1.

Conclusion: mergesort terminates because:

• each recursive call is given a shorter sequence
than its parent;

• you can’t go on indefinitely reducing the size of
the sequences without reaching a sequence size
1 or 0, when the problem is trivial.

18/9/2007 I2A 98 slides 5 13 Richard Bornat
Dept of Computer Science

You don’t have to think about how a recursive
method is going to be executed.

All you have to do is guarantee:

• that if the recursive calls do their work, then
the method achieves the desired result;

• that each recursive call is given a ‘smaller’
problem than its parent;

• that you can’t go on reducing the size of the
problem indefinitely without reaching a ‘base
case’;

• that the base case really does the business.

Experts know that to try to imagine what happens,
and in what order, is not the way to design or to

understand a recursive procedure.

18/9/2007 I2A 98 slides 5 14 Richard Bornat
Dept of Computer Science

How fast does mergesort run?

So far you’ve seen a few different patterns of
execution:

k
k
k

k

N O N
...

times :

%

&

'
''

(

'
'
'

()

M
M
M

M

N O N M
...

times :

%

&

'
''

(

'
'
'

×()

N
N
N

N

N O N
...

times :

%

&

'
''

(

'
'
'

()2

1
2
3 2

...
rows :

N

N O N

%

&

'
''

(

'
'
'

()

18/9/2007 I2A 98 slides 5 15 Richard Bornat
Dept of Computer Science

Now we have a new one: repeated halving.

N
N N

N N N N
N N N N N N N N

N O N N

÷ ÷

÷ ÷ ÷ ÷

÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

%

&

'
'
'

(

'
'
'

()

2 2
4 4 4 4

8 8 8 8 8 8 8 8

1 1 1 1 1 1 1 1

,
, , ,

, , , , , , ,
... and so on, until ...

, , , , .. , , , ,

lg rows : lg

The work done by mergesort on an array of size N is:

•either a test, a couple of recursive calls,
and a merge;

• or a single assignment.

The first alternative is O N(), apart from the work
done in the recursive calls, because mergehalves is
O N(), and the copying back is O N().

The second alternative is O 1().

18/9/2007 I2A 98 slides 5 16 Richard Bornat
Dept of Computer Science

So the work done is (work proportional to N) + (the
work done by two recursive calls, each working on an
array of size about N ÷ 2).

Each of those recursive calls does (work proportional
to about N ÷ 2) + (the work done by two recursive
calls, each working on an array of size aboutN ÷ 4).

But there are two of them, so the total is (work
proportional to N) + (the work done by 4 recursive
calls, each working on an array of size about N ÷ 4).

And so on: at each level you get (work proportional to
N) + (the work done by 2k recursive calls, each
working on an array of size about N k÷ 2).

Eventually ‘about N k÷ 2 ’ becomes 1, and the work of
the recursive call in that case is O 1().

‘about N k÷ 2 ’ never becomes 0 in the program I have shown
you. Can you see why this is?

The magic is perfect, and it is understandable. Run
it in races against Shellsort.

18/9/2007 I2A 98 slides 5 17 Richard Bornat
Dept of Computer Science

Nothing comes for nothing.

Mergesort will be much faster than insertion sort on
average, even on quite small examples, and will be
faster than Shellsort on sufficiently large examples.

experiment will show where the boundaries are

But it has a flaw: it uses a lot of space. It uses O N()
space, in fact: the space used by the to array.

If you have the space, and you want the speed, you
may be prepared to pay the price.

In general it is always possible to trade space for
speed, and vice-versa.

Proof later ...

18/9/2007 I2A 98 slides 5 18 Richard Bornat
Dept of Computer Science

Making mergesort faster still!!

We can’t make mergesort better than O N Nlg(), but
we can affect the constants of proportionality.

That is, we might be able to make it run two or three
or four ... times faster, or we might make it start up
more quickly on small examples.

18/9/2007 I2A 98 slides 5 19 Richard Bornat
Dept of Computer Science

Step 1: eliminating the copying.

The copying in mergesort is offensive. But it can be
avoided!

We have two arrays: one holds the data we want to
sort, the other is auxiliary storage. We need to
distinguish which array we want the answer in, and
which can be used, when we need it, for temporary
storage.

Actually all we need is to switch the roles of ‘answer
array’ and ‘auxiliary array’ on each recursive call!

The method heading is

void mergesort
 (type[] from, type[] to, type[] aux,
 int m, int n) {

and it is used like this:

type[] T = new type[S.length];
mergesort(S,S,T,0,S.length);

– sort S, putting the answer in S and using T as
auxiliary storage.

18/9/2007 I2A 98 slides 5 20 Richard Bornat
Dept of Computer Science

Here’s the whole method:

void mergesort
 (type[] from, type[] to, type[] aux,
 int m, int n) {
 if (n-m>=2) { // sort two elements or more
 int k = (m+n)/2; // the midpoint
 mergesort(from, aux, to, m, k);
 mergesort(from, aux, to, k, n);
 mergehalves(aux, to, m, k, n);
 }
 else
 to[m]=from[m]; // assuming m<n
}

Once again, it doesn’t pay to try to trace the action
of this method. Think inductively, like an expert.

Provided that this method takes its data from from and puts its
result in to – and it does, on lines 8 and 11 – it will work
correctly.

If to and from are the same array, then line 11 does some
unnecessary work. But it’s a tiny amount, and it’s a price
worth paying.

18/9/2007 I2A 98 slides 5 21 Richard Bornat
Dept of Computer Science

The method switches the roles of to and aux on each
recursive call.

Transfer of data from)to happens on line 11.
Transfer aux)to happens on line 8. Lines 6 and 7 ask
for transfer from)aux.

One important property is that the two calls work in
different areas of the array: line 6 works in the
m k.. "1 region of from, to and aux; line 7 works in
the k n.. "1 region. Neither touches the region of the
other. They can’t interfere.

This method should be measurably faster than the
original. You should measure the difference, in the
lab.

How much improvement might you expect? The original
mergesort does about N Nlg array assignments, plus the work
connected with about N for loops, when copying back
to)from. This one replaces all that with N array assignments,
and it uses an extra argument in about N procedure calls
(N N N2 4 1+ + + *...). Each argument provision might cost
about the same as an assignment, so it’s replacing O N Nlg()
work with O N() in just a part of the algorithm. There may not
be much in it.

18/9/2007 I2A 98 slides 5 22 Richard Bornat
Dept of Computer Science

Step 2: eliminating tests in mergehalves

mergehalves does too many comparisons. Each time
round the loop it does two, three or four comparisons
– ia1==k, ia2==n, A[ia1]<=A[ia2], ib!=n – all in the
inner loop of the algorithm.

There’s a trick we can use to eliminate limit-
comparisons like ia1==k and ia2==n. The trick is
called the method of sentinels.

Suppose we have to merge Am k.. "1 and Ap n.. "1:
suppose that An exists and is bigger than anything in
Am k.. "1; similarly Ak exists and is bigger than
anything in Ap n.. "1.

If we exhaust Am k.. "1 first, we shall be looking at Ak ,
which we will never choose because A[k]<=A[ia2] is
bound to fail. If we exhaust Ap n.. "1 first, we shall be
looking at An, which we will never choose because
A[ia1]<=A[n] is bound to succeed.

So, if we can place sentinels, we shan’t need limit-
comparisons.

18/9/2007 I2A 98 slides 5 23 Richard Bornat
Dept of Computer Science

But we haven’t room for such sentinels: we have to
merge Am k.. "1 and Ak n.. "1.

Ah! but suppose that Am k.. "1 was sorted by (!) – big
elements at the top – and that Ak n.. "1 was sorted by
($) – big elements at the bottom. We only ever look at
one or other of the sentinels (only one of the halves
can be exhausted first): either Ak would be a sentinel
for Am k.. "1, or Ak"1 would be a sentinel for Ak n.. "1!

I leave the details of the implementation to you - you
have to tell mergesort which way to sort – (!) or ($)
order – and you have to make sure everything fits
together. It’s possible, and it just about doubles the
speed!

This time the speedup should be a measurable fraction. We are
affecting the constant of proportionality, by speeding up the
O N() work of mergehalves significantly.

18/9/2007 I2A 98 slides 5 24 Richard Bornat
Dept of Computer Science

Step 3: eliminating recursion in favour of a loop

Mergesort is recursive: it doesn’t need to be.

but it is easier to understand if it’s recursive! The iterative
implementation is really intricate; the algorithm is naturally
recursive.

The message of the Landin diagram: first get it right,
then speed it up.

Each procedure call in a program takes time: about
the same time as 10 assignment instructions.

That’s true in C or C++: what is it in Java?

If we can replace procedure calls by assignments, we
can speed mergesort up a lot.

We begin by merging pairs of consecutive single-
element sub-sequences from A to B – A1 1.. with A2 2.. ,
A3 3.. with A4 4.. , ... – so that B consists of sorted two-
element sub-sequences – B1 2.. , B3 4.. , ...

Then we merge consecutive pairs of two-element sub-
sequences from B to A – B1 2.. with B3 4.. , B5 6.. with
B7 8.. , ... – so that A consists of sorted four-element
sub-sequences.

18/9/2007 I2A 98 slides 5 25 Richard Bornat
Dept of Computer Science

And so on, back and forth, until we produce a sorted
array.

I leave the details to you (though we may return to
this question, perhaps in an exam).

It won’t be possible, in the worst case, to avoid an ‘extra copy’
from B back to A.

Be careful when n m" is not exactly a power of 2!

18/9/2007 I2A 98 slides 5 26 Richard Bornat
Dept of Computer Science

Steps 4 and beyond ...

Instead of beginning by merging one-element sub-
sequences, merge ‘runs’: sub-sequences of A which
happen to be in order when you start. Then try to see
if you can carry on by merging ‘runs’ from B ...

There is space for a competition here! The fastest
mergesort could win a prize ...

18/9/2007 I2A 98 slides 5 27 Richard Bornat
Dept of Computer Science

Key points
recursion is not self-definition: we don’t define f in terms of f, but f x()

in terms of f y(), where y is a smaller/simpler problem than x.

a recursion will terminate provided that the sequence of calls
f x f x0 1() (), ,... which it generates always reaches f xtriv(), which

can be solved without the use of f (there are other possible
conditions, but in principle they are the same as this one).

sometimes algorithms are best presented recursively.

by the principle of repeated halving, any recursive method f which
executes the sequence “prepare; f(one half); f(the other half);
tidyup” will do its work in O N Nlg() time provided that (a)
prepare and tidyup together are O N() and (b) f xtriv() is O 1().

merge (mergehalves) is O N() in execution time, O 1() in space.

mergesort is O N Nlg() in execution time, O N() in space.

mergesort is faster but uses more space than insertion / selection /
bubble sort, each of which is O 1() in space but O N 2() in time.

mergesort is faster than Shellsort given a sufficiently large problem, but
uses more space.

we can speed up mergesort quite a lot, but we will never beat the
O N Nlg() time barrier, or the O N() space barrier, with the
mergesort algorithm.

